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Binary Weight Distributions of Some
Reed-Solomon Codes
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The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes

and their duals are computed using the MacWilliams identities. SeverM mappings

of symbols to bits are considered and those offering the largest binary m/n/mum
distance are found. These results are then used to compute bounds on the soft-

decoding performance of these codes in the presence of additive Gaussian noise.

These bounds are useful for finding large binary block codes with good performance

and for verifying the performance obtained by specific soft-decoding algorithms

presently under development.

|
|

I. Introduction

Reed-Solomon (RS) codes are currently used in the
DSN as outer codes in a concatenated coding system. For

this application, they are decoded by algebraic techniques

using operations in the field over which the code is de-

signed. An (n, k) RS code C over GF(2 m) has codewords

of length n = 2"_ - 1 symbols, where each symbol is a

binary m-tuple. Let Ai be the number of codewords of

weight i in C, then the vector (Ao,A1,...,A,) is called

the weight distribution of C, where the weight (Hamming
weight) of a codeword is the number of its nonzero coor-
dinates. The term "coordinate" assumes different mean-

ings depending on how one views the code: One may as-
sume that there are n coordinates, each having a value in

OF(2m), or one may consider the binary expansion of the

code, i.e., a binary (nm, kin) code, where each coordinate

is a single bit. Hence, one may be interested in the symbol

weight distribution br in the binary weight distribution of a
(nonbinary-) code. The latter depends on the specific Sym-

bol to binary m-tuple mapping that was chosen. Which
of these distributions is of interest depends on which type
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of decoding algorithm one plans to use, since weight dis-

tributions are essential in evaluating the error-correcting

performance of a code. The symbol weight distribution of

RS codes is well known [1] and can be used to find the per-
formance of algebraic decoders working on symbols. The

full error-correcting power of a code is obtained when soft,
maximum-likelihood decoding is used, working directly

on unquantized vectors in the nm-dimensional Euclidean
space. Soft, maximum-likelihood decoding is superior to

its hard quantized version by more than 2 dB. Further-

more, the algebraic decoding techniques usually employed
for RS codes are not maximum-likelihood, but rather 'fin-

complete" decoding techniques with a nonzero probability

of decoding failure.

II. Binary Weight Distribution

This article focuses on evaluating the soft, maximum-

liIceI_ood decoding performance of RS codes, and there-
fore one needs to compute the binary weight enumerators

of these codes. Such a task is a long-standing open prob-



lemin codingtheory due to its intrinsic Complexity. How-

ever, approximate results have been found and results for

special classes of codes are known.

In general, one could think of using an exhaustive enu-

meration to find the numbers Ai by considering each code-
word. Unfortunately, such a method is limited to fairly

short codes, even on the most powerful computers avail-
able.

It was possible, for example, to find by exhaustive enu-

meration the weight distribution of a (21,15) binary code
obtained from the (7,5) RS code over GF(23), but it was

impractical to find that of a (60,36) binary code obtained

from the (15,9) RS code over GF(24), since it involves 236

codewords. Fortunately, a well-known result from coding

theory, the MacWilliams identities [2], can be used to re-
late the weight distribution of a code to that of its dual.

For example, one can find the binary weight distribution

of the (15,9) RS code from that of its (15,6) dual code, by
exhaustive enumeration on 224 codewords instead of 236

codewords.

Let the weight enumerator of a code C be defined as

Wc(z,y) = v"" ,_. ,,-i iz_,i=o.',z y. Then the weight enumera-
tor of the dual code C ± of a binary code C is given by

[MacWilliams identity over GF(2)]

Wc_. = _--gWc(x+ y, • - y)

The generator polynomial of an (n, k) RS code C may
be written as

n-k

i=1

where b can be chosen among the values 0,1,--.,n- 1,

and a is a root of the primitive polynomial over GF(2)
defining the field GF(2rn). The parity check polynomial

h(x) of the code C

z"-l= fl (x-a i+_)
h(_) = _ _--,,-k+_

is the generator of the dual code C ±.

The binary weight distribution of the (21,15) binary

code derived from the (7,5) RS code is shown in Table 1

together with the distribution of the (21,6) dual code as-

sociated with the (7,2) RS code. Results are shown for
different values of the parameter b that correspond to dif-

ferent assignments of symbols to binary m-tuples. These
are only a small subset of all possible assignments. The

weight distributions shown in Table 1 could be found by

exhaustive enumeration. For the (7,2) RS code, the largest

binary minimum distance found was 8, which is the best

possible according to [4]. For the (7,5) RS code the best re-

sult was dmi,, = 4, which meets the Griesmer upper bound

[3].

The weight distribution of the (60,36) binary code was

found by using the MacWilliams identity for binary codes,

by a procedure shown in Fig. i_ First, the (15,6) dual

code was generated by using the parity check polynomial

of the (15,9) code as its generator. Then, the (15,6) code

over GF(24) was represented as a binary (60,24) code by

mapping symbols in GF(24) to binary 4-tuples by using

the representation of field elements given by the irreducible

polynomial 1+ x + z 4 over GF(2). The weight distribution

of the (60,24) code was found by exhaustive enumeration,

and finally, the weight distribution of the (60,36) code was
computed by the MacWilliams identity for binary codes.

The missing arrow in the block diagram of Fig. 1

stresses the fact that the resulting (60,36) code is not nec-

essarily related to its nonbinary parent, the (15,9) code, by

the same mapping relating the (15,6) code to the (60,24)
code. Table 2 shows the binary weight distributions for

some (60,24) codes derived from the (15,6) RS code, where

the largest minimum distance found was 13. It is known

[4] that at least one (60,24) code exists for some value of
d,nin in the range 16 to 18. Table 3 shows similar results

for the (60,36) code, where the largest minimum distance

found was 8. At least one (60,36) code exists for some

value of drain in the range 9 to 12 [4].

III. Performance Evaluation

The soft decoding performance of block codes can be

estimated by union bounding techniques. Specifically the
word error probability P_o is upper bounded by [5]

P_<_
j=2

where R = k/n is the code rate, M = 2k is the number

of codewords, and wj is the weight of the jth codeword.
The bound on Pw may be easily rewritten in terms of the

weight distribution Ai as
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Similarly, for hard quantized, maximum-likelihood decod-

ing one can derive the union bound [5]

M

Pw _< E [ x/4p(1 -P)]
,/=2

wj

whorep=
The word error probability P_ can be related to the

average bit error probability Pb by observing that when at
least t+ 1 errors occur, the decoder produces an errroneous

codeword containing at least d,mn = 2t + 1 errors over n

symbols. Therefore, kd,_i,/n is the average number of

erroneous bits. Since in a codeword there are k bits, one
has

These bounds and approximations were used in Fig. 2

to evaluate the performance of the (60,36) binary code

derived from the (15,9) RS code with b = 0.

At a high signal-to-noise ratio (SNR), the approxima-

tion erfc(x) _ e-_/xV_ may be used. Considering only

the contribution of codewords at dr"in, for soft decoding,

one has the approximation

1 e-u_
Pro "_ FAd,,,,, "_

where u = x/RdminEb/No. The probability of bit error
Pb may be approximated by Pb _ (dr.in/n)Pw, as shown

in Fig. 2.

Experience with simulation results for smaller codes in-

dicates that this approximation is usually close to the true

performance, while the bounds become loose at Pb larger
than 10 -6 .

IV. Conclusion

By computing the binary weight distribution of block
codes, it is possible to estimate their performance with

soft, maximum-likelihood decoding. This is useful in order

to find large binary block codes with good performance,

and to verify the performance obtained by specific soft-
decoding algorithms presently under development.
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Table1.Binaryweightdistributionsforthe (7,2) and (7,5) codea.

(21,6) CODE (21,1 5) CODE

weight b=0, b=l b=2, b=6 b--.3, b=4, b=5 b=0, b=4 b=l, b=2, b=3 b=5, b=6

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 28 21 0

0 0 0 84 91 210

0 0 0 273 322 0

0 0 0 g24 875 1638

3 0 0 1958 180g 0

0 21 14 2982 3129 6468

7 0 0 4340 4585 0

21 0 21 5796 5551 10878

21 0 0 5796 5551 0

7 42 21 4340 4585 9310

0 0 0 2982 3129 0

3 0 7 1956 1809 3570

0 0 0 924 875 0

0 0 0 273 322 651

0 0 0 84 91 0

0 0 0 28 21 42

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 1 0

c

=
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Table 2. Weight dlstrlbutlons of the (60,24) code,

212

weight b=O,b=5 b=l,b=4 b=2, b=3 b=6, b=14 b=7, b=13 b=8, b=12 b=9, b=lO

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 12

0 0 0 0 0 0 0 0

0 0 15 30 30 0 15 0

15 75 90 0 0 0 0 0

150 300 180 450 375 420 390 485

676 659 679 0 0 0 0 0

2250 2160 2490 5190 4125 4530 4500 4425

6555 5520 5505 0 0 0 0 0

14720 13220 13265 23420 28760 27485 27225 27240

29565 29760 29955 0 0 0 0 0

56304 60690 60795 135420 120585 121875 123000 120204

113255 115460 117455 0 0 0 0 0

218760 206520 205410 361140 408810 407565 407565 416895
J

342285 342180 339525 0 0 0 0 0

493400 531470 525185 1185680 1058015 1060295 1056500 1043975

758583 756000 753105 0 0 0 0 0

1079040 1000860 1018335 1778220 2016660 2016945 2020005 2034210

1277425 1275280 1281835 0 0 0 0 0

1414125 1519215 1509690 3387720 3046005 3040095 3043830 3017910

1665945 1669170 1666155 0 0 0 0 0

1831108 1719736 1717876 3013272 3414132 3418617 3413237 3450383

1665945 1669170 1666155 0 0 0 0 0

1414125 1519215 1509690 3403485 3040170 3041160 3041205 3012720

1277425 1275280 1281835 0 0 0 0 0

1079040 1000660 1018335 1779060 2015760 2015895 2018235 2027940

758583 756000 753105 0 0 0 0 0

493400 531'470 525185 1176580 1061395 1059385 1058160 1057440

342285 342180 339525 0 0 0 0 0

218760 206520 205410 360300 409950 408615 409575 411105

113255 115460 117455 0 0 0 0 0

56304 60690 60795 138168 119493 122493 122148 119361

29565 29760 29955 0 0 0 0 O'

14720 13220 13265 23780 28100 27035 26375 28070

6555 5520 5505 0 0 0 0 0
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Table 2 (contd).

weight b=O.b=5 b=l,b=4 b=2, b=3 b=6. b=14 " b=7. b=13 b=8. b=12 b=9, b=11 b = 10

2250 2160 2490 4890 4305 4245 4755 4350

676 859 679 0 0 0 0 0

150 300 180 390 525 495 465 480

15 75 90 0 0 0 0 0

0 0 15 20 20 65 30 30

0 0 0 0 0 0 0 0

o o o o o 0 o o

o o o o o 0 0 o

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 o 0 o 0 0 0 o

o o o o 0 o 0 o

o o o o o o o o

1 1 1 o o 0 0 o

1 ii

Table 3. Weight distributions of the (60,36) code.

b=O. 5=5 b=l, _-4 Io=2, I)=3 b=6, lo=14 b=7, 10=8,b=12 5=9, 5=11 b = 10 b = 13

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 60 0 0

105 360 270 105 105 75

0 0 0 660 765 945

9135 8067 9012 4350 4470 4500

171290 17OO45 166730

0 0 0

2051130 2063850 2069655

0 0 0

1784143517857290 17827110

20940

8425O

307620

1035980

3169396

8879100

21045

84370

308790

1029780

3166O06

8926260

20655

8436O

30672O

I O33O8O

3172656

8909250

0 0 0 23084220 23077425 23080095

110247955 110242255 110291800 55357350 55135110 55169540

0 0 0 121876250 121900185 121870485

499868640 499744149 499677249 248880309 249779349 249773439

1 1

0 0

0 0

0 0

0 0

0 0

0 0

15 0

135 60

1065 1005

4380 4605

19995 2O5O5

8595O 84955

_1o_o5 _o

1025820 1025910

3163509 3171105

892O44O 8933025

23067975 23087925

55153100 55148985

121962285 121868505

249831315 249692244
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Table3(contd).

weight b=O,b=5 b=l,b=4 I)=2,b=3 b=6,b=14 b=7,1:)=8,b=12 b=9,Io=11
0 0 0 475905260

1686545400 1687429560 1687309875 846944880

0 0 0 1393888920

4209960090

0

8326857870

1_7_76540

14091448412

1_70268365

8327053230

42099_2_

168644364O

4297337520

8331803670

12363639450

14098870268

12363796815

8331595110

4297446770

1687482200

499664656

_97910160

8330907000

12384_9380

14098595918

12364_0385

8331101280

4297957910

168_1_30

4096096_499970973

2140496050

3094309388

4181824860

5245474360

6158040345

6821742120

7076641208

6821742120

6158040345

5245474360

4181824860

3094399368

2140496050

1393888920

846944880

475_5260

248880309

4759 1156o 475934ooo

840913200 843841440

1393820040 1393858400

2148328210

3094425258

4166545740

5245577050

6180719145

6821_1090

7O508OO888

2148446550

309437_53

4166496360

_465_7_

6180621765

6821687250

7050973648

b=lO

47579_15

84_0_

1_3933350

2148756230

3094295130

4165579800

5245776110

6182502685

b= 13

475896440

844133640

1393917240

2148052240

30943_658

41_6076_

5245426450

6181074915

6021_5530 6821775660

7_8404138 7050221828

6821_5530 682177566O6821661O60 6821687260

6180719145 6180621765 6182602665 6181074915

5245577050 5245564790 5245776110 5245426450

4166545740 4166496360 4165579800 4166607690

3094425258

2148328210

30943_858

2148446550

1393856400

3094295130 3094397656

2148756230 2146052240

1393933350 1393917240

843707280 84413364O

47_9_15

249831315

343841440

475934000

249773439

1_3820040

64_13200

4759 11 560

249779349

475896440

249692244

0 0 0 121876260 121900185 121870485 121962285 121868505

110224195 110285095 110300020 55357350 55138110 55169540 55153100 55148985

0 0 0 23084220 23077425 23080395 23067975 23087925

17833530 17831625 17829870 6879100 8926260 8909250 8920440 8933025

3169396

10389802O667302071290 2O63835

168400

9OOO

225

168120

3172656

I O33O80

3O672O

8436O

20655

45OO

945

75

8895

36O

167845

8715

345

30782O

3425O

2O940

3166OO6

102978O

30879O

3183509

102582O

31O3O5

85950

19995

438O

1065

135

84370

21045

4470

765

105

4350

66O

105

0 0 0 60 0 0 15

0 0 15 0 0 0 0

0 0 0 0 0 0 0

3171106

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0

1 1

1025910

3O669O

84955

2O505

46O5

1005

60

0 0

0 0

0 0

0 0

1 1
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(15,6)
RS CODE

GF(24)

(15,9)
RS CODE

(60,24)
BINARY CODE

MacWILLIAMS I

IDENTITY

GF(2)

(6O,36)
BINARY CODE

Fig. 1. Method used to flnd the binary weight
dletrlbutlon.
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Fig. 2. Performance of (60,36) binary code derived trom (15,9)
RS code.
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